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SUMMARY

This study is an application of H1 and �-synthesis for designing robust tracking controllers for

the Large Angle Magnetic Suspension Test Facility (LAMSTF). The modeling, design, analysis, simulation

and testing of a control law that guarantees tracking performance under external disturbances and model

uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used

is discussed. This study demonstrates the tradeo� between tracking performance at low frequencies and

robustness at high frequencies. Two sets of controllers were designed and tested. The �rst set emphasized

performance over robustness while the second set traded o� performance for robustness. Comparisons of

simulation and test results are also included. Current simulation and experimental results indicate that

reasonably good robust tracking performance can be attained for this system using multivariable robust

control approach.

1 Introduction

The Large Angle Magnetic Suspension Test Facility (LAMSTF) has been assembled by NASA Langley

Research Center for inhouse research in magnetic suspension technology. Reference [1] and the references

therein give a detail description of the facility and discuss in detail the open-loop dynamic properties of

the magnetic suspension system. This system represents a scaled model of a planned Large-Gap Magnetic

Suspension System (LGMSS). Robust tracking control for the LAMSTF consists of controlling the attitude

and position of the suspended rigid body in the presence of external disturbances and model uncertainties.

The motion of the suspended rigid body is in general nonlinear and hence the linear, time-invariant perturbed

motion about an equilibrium state is considered in this study.

The underlying assumption in this study is that su�ciently accurate nominal and uncertainty models

can be obtained from �rst principles combined with laboratory experiments. Indeed, currently there is a

great deal of interest in the robust control community involving system identi�cation for robust control. This

motivates designing controllers that are robust to modeled uncertainties. We note that although empirical

models could be synthesized through extensive testing in the laboratory or even in space, there are always

physical limitations on the accuracy of the empirical model. The novelty in this paper consist of de�ning

robust tracking performance, modeling of uncertainties, and evaluating simulation and experimental results.

The work reported herein parallels references [2]-[6]. The study reported in [2]-[6] considers vibration

attenuation and �ne-pointing control for a stable large exible laboratory structure. In stark contrast to the

above passively stable exible structure, the LAMSTF system considered is a highly unstable rigid body.

Furthermore, the nature of the uncertainties in the two systems di�er; the uncertainty in the system in [2]-[6]

is mostly due to inaccurate knowledge of damping, frequency and modeshapes of the structural modes and

truncated higher frequency structural modes while for LAMSTF, the uncertainty is mostly due to errors
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in the linearization about the equilibrium state, an inaccurate knowledge of the spatial distribution of the

magnetic �eld, errors in the sensor system hardware, and errors at the plant input due to induced eddy

currents.

2 LAMSTF Model

The system shown in Fig.1 is the LAMSTF system located at NASA Langley Research Center. This

system basically consists of �ve electromagnets which actively suspend a small cylindrical permanent magnet.

The cylinder is a rigid body and has six independent degrees of freedom, namely, three displacements and

three rotations.

b̂1

2b̂

3b̂

n̂1
2n̂

3n̂x

g  -  Acceleration due to Gravity

Figure 1: LAMSTF Con�guration

2.1 Nonlinear Model

Let the unit vectors, b̂i, and n̂i, denote the i-th components of body and inertial coordinates which

are initially assumed to be colinear. De�ne the following variables: the angular velocity of cylinder with

respect to inertial frame ~! =
P

3

i=1 !ib̂i, disturbance torque about centroid
~� =

P
3

i=1 �ib̂i, centroid velocity

~v =
P

3

i=1 vin̂i, position of centroid relative to origin of inertial frame ~x =
P

3

i=1 xin̂i, and disturbance

force acting on cylinder excluding magnetic forces as ~Fex =
P

3

i=1 Fin̂i. Let (�0; �1; �2; �3) denote the Euler

parameters [7] which describe the attitude of the cylinder. The Euler parameters satisfy

3X
i=0

�i = 1 (1)

and the general rotational motion can be viewed as motions on the surface of a unit four dimensional

hypersphere. Denote the direction cosine matrix by Cij; i; j = [1; 2; 3] where b̂ = Cn̂. The direction cosines

are related to the Euler parameters by
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Due to symmetry about the 1-axis, the mass moment of inertia about the body axis is denoted by I1 and

I2 = I3 = Ic. Let the physical parameters, �, Mx, and mc, denote the core volume, core magnetization, and

mass of the suspended body, respectively. The nonlinear equation of motion for the cylindrical magnet in a

magnetic �eld are given as follows:

8<
:
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The variables, Bi, and Bij , denote the i-th inertial component of the magnetic �eld and its gradient in the

j-th inertial direction at the instantaneous centroid location of the suspended magnet, respectively. Hence,

in general, Bi = Bi(x; �), and Bij = Bij(x; �) are dependent on the instantaneous centroid location of the

suspended mass, x = (x1; x2; x3)
T , and the current applied to the �ve electromagnets, � = (�1; . . . ; �5)

T .

By de�ning the (13 by 1) state vector

� = (!1; !2; !3; �0; �1; �2; �3; v1; v2; v3; x1; x2; x3)
T (7)

and external disturbances

q =
�
�1=I1 �2=Ic �3=Ic O1�4 F1=mc F2=mc F3=mc O1�3

�T
(8)

The equation of motion can be written as

_� = f(�; �) + q (9)

The �ve currents are the only control variables.

Currently, the general analytical expression for Bi(x; �) and Bij(x; �) are not available. However, the

magnetic �eld is approximated quadratically in a small neighborhood around a nominal position and current,

(xo; �o). Indeed, based on empirical measurements from the laboratory and with the aid of computer

modeling, numerical values for the �eld distribution, its gradient, and curvature has been obtained about a

point which is conveniently chosen to be the origin of the inertial coordinates. Let x = xo+�x and � = �o+��

denote the instantaneous centroid positions and the coil currents respectively. Then the measured second-

order description of the i-th �eld component about the nominal values are given by

Bi(x; �) = Bi(xo; �o) +

�
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��
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�
+ Higher Order Terms (10)

The �eld gradients are also approximated by the quadratic �elds, i.e., linearly approximated.

2.2 Equilibrium State

For convenience, the nominal position and currents are chosen at an equilibrium state. Consider the

candidate equilibrium state

�o = (0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)T (11)

This equilibrium state corresponds to the body frame being colinear with inertial frame with zero angular

and translational velocities. Imposing the requirement, _� = 0 at state �o for zero external disturbances,

leads to the equilibrating �eld and gradients which satisfy

�
C21 C22 C23

C31 C32 C33

�
�o

8<
:

B1

B2

B3

9=
;

�o

=

�
0

0

�
(12)

�Mx

mc

2
4 B11 B12 B13

B21 B22 B23

B31 B32 B33

3
5
�o

8<
:

C11

C12

C13

9=
;

�o

�

8<
:

0

0

g

9=
; =

8<
:

0

0

0

9=
; (13)

3



The above equations reduce to the following constraints:

B2 = B3 = B11 = B21 = 0; B31 =
mc

�Mx

g (14)

To compute the corresponding equilibrating currents, we note that the �eld and gradient at �o is a linear

function of currents in the �ve electromagnets [1] and are given by

Bi(xo; �) = Ki�; i = (1; 2; 3) (15)

Bij(xo; �) = Kij�; i; j = (1; 2; 3) (16)

where Ki and Kij are 5 by 1 row vectors which denote the �elds at xo produced by each coil per unit of

current. Thus the equilibrating currents, �o, must satisfy the �ve linear equations

2
66664

K2

K3

K11

K21

K31

3
77775 �o =

8>>>><
>>>>:

0

0

0

0
mc

�Mx

g

9>>>>=
>>>>;

(17)

which is identical to equation (54) in [1]. The 5 by 5 coe�cient matrix turns out to be a well-conditioned full

rank matrix and hence the equilibrating currents are unique and can be computed accurately. In summary,

the current, �o, which satisfy the latter equations, will generate a magnetic �eld that results in the equilibrium

state, �o.

2.3 Perturbed Motion About Equilibrium

Consider perturbed motion,

� = �o + ��; � = �o + �� (18)

From the nonlinear equations, note that the roll rate of the cylinder, !1, is uncontrollable from the magnetic

forces and the perturbed Euler parameter, � _�0, equals zero at equilibrium, i.e., ��o is a constant. In addition,

the variation in the Euler parameters are not independent since � _�1 = �� _�2� � _�3 from Eq.(1) and � _�0 = 0.

This means that three of the thirteen states can be eliminated in describing the perturbed motion as outlined

below.

By de�ning the reduced (10 by 1) state vector

� = (!2; !3; �2; �3; v1; v2; v3; x1; x2; x3)
T (19)

and using the second-order �eld approximation in Eq. (10) about the equilibrium, the linearized equation

about �o is given by

� _� = Â�� + B̂�� + qr (20)

where �!1 and ��0 are constants, ��1 = ���2 � ��3 � ��0,

qr =
�
�2=Ic �3=Ic O1�2 F1=mc F2=mc (F3 + 2�MxB31��o)=mc O1�3

�T
(21)

and

Â =
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B̂ = �Mx
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It can be shown that all ten states are completely controllable from the �ve coil currents. The open-loop

system at the equilibrium state is also very unstable. For a detail discussion of the physical signi�cance of

all modes, the interested reader is referred to [1].

2.4 Sensing and Actuation

Five physical variables are sensed indirectly and they are the pitch and yaw angles, and three dis-

placements of the centroid. For large angles, the pitch and yaw angles (hence direction cosines) are related

nonlinearly to the Euler parameters as given by Eq.(2).

For small angles, the rotation and displacements are actually perturbed rotations and displacements

about the equilibrium state. The �ve physical variables sensed, denoted as y0, are related approximately

linearly to the Euler parameters as

y0 =

8>>>><
>>>>:

�(pitch)

�(yaw)

�(x-transl)

�(y-transl)

�(z-transl)

9>>>>=
>>>>;
�

8>>>><
>>>>:

2��2
2��3
�x1
�x2
�x3

9>>>>=
>>>>;

= Ĉ�� (24)

where

Ĉ =

�
O2�2 2I2�2 O2�3 O2�3

O3�2 O3�2 O3�3 I3�3

�
(25)

In the laboratory, the actual measured outputs denoted by y, are voltages and are related to the angular

and translation variables and perturbed states by

y = [p2s] y0 = [p2s]Ĉ�� (26)

Figure 2 shows the input and output block diagram of the LAMSTF plant. The input consists of �ve currents

into �ve electromagnets and the measured outputs are �ve voltage signals. Very briey, the current into the

electromagnets generates a magnetic �eld which produces a net force and torque on the suspended cylinder,

which is a permanent magnet. The resulting motion of the cylinder produces the pitch, yaw, and centroidal

displacements that are sensed by a set of �ve optical shadow sensors that produce the output voltage signals.

The sensor system has a high bandwidth and is modeled as an all-pass �lter, i.e., the transfer function matrix

is a constant, non-diagonal, non-singular matrix, denoted [p2s].

Bi = ρKi
I max

Bij = ρKij
Imax

Cylinder
Dynamics p2s

magnetic
forces &
torquesamp volt

yρ y’

pitch
yaw
x,y,z

Figure 2: Block Diagram of LAMSTF Plant
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3 Controller Design

3.1 Design Objectives

The main objective of the controller is to stabilize the cylinder and track a command signal about the

equilibrium state. Of course the problem is complicated by the omni-presence of model errors and noise.

Hence, robust tracking is sought. This requires the speci�cation of a tracking performance index and the

uncertainty set for which the tracking performance is supposedly guaranteed. While there are several ways

to design multivariable stabilizing controllers, (for example, dissipative control, optimal linear regulator,

eigensystem assignment, loop-at-a-time PID controller, or Youla parameterization) the challenging aspect is

to guarantee a speci�c tracking performance in spite of imperfect knowledge of the actual physical system.

Of course this guarantee is with respect to modeled uncertainty which itself may be uncertain. This in turn

suggests that the designer's con�dence level should be reected in the degree of conservatism in the modeling

of uncertainty, i.e., uncertainty in the uncertainty model itself is a real dilemma.

Controllers are sought for a set of plants that meet a certain tracking performance in contrast to

optimizing the closed loop system for a particular plant. The set of plants are de�ned by the nominal and

uncertainty models. The linearized analytical model derived from �rst principles is used as the nominal

model while the perturbations are obtained from engineering judgement without the bene�t of any system

identi�cation test data. Figure 3 illustrates the interconnection of the nominal plant, modeled uncertainties,

and the controller structure. Besides the tracking command and performance loops, uncertainties at the

Σ

Control
Currents

∆ρ

Wρ

Σ

∆y

Wy

K
Tracking
error

Wperf

amp pitch
yaw
x,y,z

ZOH

Time 
Delay

Σ

Ymax

Tracking
Performance

Tracking 
Command

Wu

Control
Penalty

Cylinder
Dynamics

Input Uncertainty Output Uncertainty

-

Figure 3: Interconnections of the LAMSTF system

plant input and output are included. The controller is also limited by a control penalty weight to prevent

possible singular control solutions and to satisfy realistic actuator saturation constraints. Due to real time

digital implementation, a computational time delay block and a zero-order-hold block are included. The

following section provides details of the performance and uncertainty descriptions used in the control problem

formulation.

3.2 Tracking Performance

The tracking performance of interest depends on the transfer functions from the tracking command, zc,

to the tracking error, e, where e = zc � y0. This transfer function matrix is the sensitivity function matrix

at the output and is written as

e=zc = (I +GK)�1 (27)

where GK denotes the loop gain matrix. In the sense of classical control, the inverse return di�erence (or

sensitivity matrix) should be made small or alternately, the loop gain should be large over a bandwidth,
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BWtrack, of interest where tracking performance is desired. In terms of multivariable control, this require-

ment for smallness of the inverse return di�erence matrix can be de�ned by principal gains (i.e., singular

values of transfer matrices) such that

��
�
(I +GK)�1

�
� p(j!); 8! 2 [0;1) (28)

where the performance weighting function, p(j!), which is chosen as a rational polynomial, should be

relatively small over the bandwidth, BWtrack.

So far, the above requirements assign equal importance to each component of the vector of error signals.

However, two factors should further inuence the tracking performance metric, namely, di�ering units and

range of signals, and relative physical importance of signals. For this control design for LAMSTF, it is

assumed that the maximum amplitudes of the desired tracking command are given by

Ymax = diag
�
�

�
180

rad �
�
180

rad �:0005meters �:0005meters �:0005meters
�

(29)

By normalizing the tracking command input by the absolute values of the above matrix, the command input

will be normalized to unity. Note that the maximum singular value corresponding to this scaled transfer

function from command input to tracking error can be interpreted as the maximum 2-norm error with

respect to all unit 2-norm bounded tracking command vectors, scaled by Ymax. The tracking errors are then

normalized by Y �1max to account for di�ering units and range of signals. Furthermore, the relative physical

importance of the error signals are de�ned by a constant diagonal matrix, �, where � = diag(:9; :5; :5; :3; :3).

The above requirements can be summarized as

��
�
�Y �1max(I +GK)�1Ymax

�
� p(j!); 8! 2 [0;1) (30)

In terms of H1 norm the above weighted constraint on the inverse return di�erence transfer function matrix

becomes

kWperf (I +GK)�1Ymaxk1 � 1 (31)

where Wperf = p(s)�1�Y �1max.

Figure 4 shows the performance weight, p(j!), used in the design. The �rst-order polynomial
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Figure 4: Frequency Weights p(s)�1 for Tracking Performance. Performance case (solid), Robust case

(dashed)

p(s) = fDC

�
(s + !n)

(s+ !d)

�
!d

!n

��
(32)

was chosen with !n = 2:2 r/s, !d = 1400 r/s, and fDC = :01 for the performance case and !n = 10 r/s,

!d = 1400 r/s, and fDC = :05 for the robust case. This weight speci�es the steady state tracking error to

be within 1 % for the performance case, and within 5 % for the robust case. The weight decreases by 20

db per decade until 1400 rad/s. This frequency weighting results in the tracking error reaching 100% at a

frequency of about 200 rad/s for both controllers. The slightly higher bandwidth for the performance case

will yield a controller with a slightly faster rise time. Note that this weighting is suited for step commands

which have similar slope. In the sequal, the performance parameters are varied to tradeo� with robustness.
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3.3 Model Uncertainty and Noise

3.3.1 Uncertainties at Input

There are several causes for model uncertainties in the LAMSTF system. An important source of error,

which is di�cult to model, is the implicit error in the linearized model about the assumed equilibrium state.

Because of unquanti�ed uncertainties in the constants assumed for the second-order (�rst order for �eld

gradients) magnetic �eld model, the true magnetic �eld produced by the �ve electromagnets may deviate

from the predicted values. Since the true values for the equilibrium currents (and hence the correct linearized

model) would require the precise knowledge of the magnetic �eld and its gradients as given by Equation

(17), these errors a�ect both the equilibrating and stabilizing magnetic �elds.

This error a�ects the values for the nominal plant �Â and �B̂. It can be shown through a perturbation

analysis about equilibrium that inexact magnetic �eld values (parameter errors) and corresponding equilib-

rium current errors will appear as constant forcing terms in the linear state equations. These linearization

errors are approximately modeled as uncertainties in the equilibrating currents, i.e., at the input of the plant.

Other sources of uncertainties include calibration errors, temperature e�ects, electrical noise and bias

error in the current signal that produces the magnetic �eld. All of the above factors are lumped together

and modeled as bounded multiplicative uncertainties at the input.

The uncertainties at the inputs are taken as ��W� where �� are arbitrary unstructured matrices that

satisfy

k�(s)currk1 � 1; (33)

and W� = f�I5�5.

Figure 5 shows the maximum multiplicative uncertainty assumed at the plant input. While the
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Figure 5: Frequency Weighting for Input Uncertainty. Performance case (solid), Robust case (dashed).

uncertainty for the performance case assumes only 1% error, the uncertainties in all �ve actuating current

signals into the coils for the robust case is assumed to have 8% error at low frequencies and rolls up linearly

at 300 rad/sec to attain values of more than 30% error at 1250 rad/sec (200 Hz). The uncertainties are

assumed fully coupled i.e., unstructured.

3.3.2 Uncertainties at Output

The sensing system provides measurements of the pitch and yaw angles and the location of the centroid.

It consists of �ve shadow sensors which detect the amount of unblocked light passing the suspended element.

The light is detected by photodetectors, converted to voltage signals, and transformed to provide the �ve

position and orientation parameters. There are various limitations to performance of this system, including

noise, calibration errors, and dynamic range.

The noise is expected to be larger at higher frequencies and control activity should be limited accordingly.

The calibration errors cause inaccurate gains and may lead to spurious coupling between the di�erent degrees

of freedom. Also of importance is the linear range of the sensors which are limited to �1o for pitch and yaw
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and :5 millimeters for x,y, and z axes. Any motion beyond the above ranges results in high non-linearity

and/or sensor saturation.

To approximately model the above uncertainties, an unstructured frequency dependent multiplicative

uncertainty at the plant output of the following form is proposed:

py(s) = fy

�
(s + !n)

(s+ !d)

�
!d

!n

��
(34)

with parameters, !n = 180 r/s, !d = 1800 r/s, and fy = :06. While the output uncertainty for the

performance case was chosen at 1% constant over all frequencies, the weight parameters for the robust case

speci�es the maximumuncertainty in the sensor signal at low frequencies to be 6 % and increases, as shown

in Figure (6), to 60 % at 1800 rad/sec to provide noise immunity (see Fig. 6).
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Figure 6: Frequency Weighting for Output Uncertainty. Performance case (solid), Robust case (dashed).

The above uncertainties were chosen for the pitch, yaw, and x,y,z outputs which have di�erent units.

Hence, as was done with the inputs, the outputs are initially normalized and then �nally de-normalized to

account for di�erent units in the unstructured uncertainties. Figure 7 shows the output weighting procedure

in block diagram form.

YYmax

-1

ωn ωd

p(  )ω
y

pitch

yaw

X

Y

Z

σ(∆  )<1y

normalize freq. wt. unstr. unc. de-normalize

max

Figure 7: Output Uncertainty Weighting.

3.4 Controller Weights, Time Delay, and Zero-Order-Hold

In the implementation of controllers, the importance of various practical constraints besides signal noise

becomes evident. First, the outputs of the actuators are limited by the saturation amplitude of the input

currents. Figure 8 shows the frequency weighting of the control e�ort in all �ve channels. The DC gains are

used for penalizing excessive control power while the increase in the penalty at higher frequency is used to

encourage controller roll-o�. The actuator electromagnets have su�cient bandwidth to be behave as all-pass

�lters and hence are approximated by constants with saturation limits.

All controllers were designed assuming a continuous system but were implemented digitally. The use

of real-time digital computers means that the analog signals must be discretized by sampling followed by

zero-order-hold, with the further complication of a computational delay. The above discretization e�ects are
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Figure 8: Controller Penalty Weighting

approximately accounted for in the continuous control design by introducing continuous approximations of

a pure time delay and a zero-order-hold as shown below,

�T = e�sT �
1� sT

2

1 + sT
2

ZOH =
1� e�sT

sT
�

1� sT
6

1 + sT
3

(35)

A pure time delay of 1

5
sampling period was assumed. It was discovered that compensators designed without

the inclusion of these e�ects had poor performance when implemented digitally, due to signi�cant phase

errors occurring at high frequencies.

A small amount of pure time delay is implicitly accommodated for by the input and output multiplicative

uncertainty used because the uncertainty is modeled as complex quantities bounded only by their norms.

However, the phase delay accommodated is only about 5.7 degrees for an assumed uncertainty of 10 percent

and is equal for all frequencies.

3.5 � Analysis/Synthesis

The bene�t of the �-analysis and synthesis framework is that, performance robustness for a fairly general

class of robust control problems can be precisely de�ned by the scalar, �. The underlying theory which

forms the basis of this method is discussed in detail in [8]-[11]. Currently, � cannot be computed directly

for a general structure. Instead, an upper bound is computed for both analysis and synthesis purposes.

Lower bounds are computed mainly to evaluate the degree of conservatism of the upper bound. Designing

controllers by � synthesis involves an iterative minimization of the upper bound using H1 methods. The

�-design problem is summarized as follows:

minimize

Fl(P;K) 2 H1; D 2 D

kDFl(P;K)D�1k1
(36)

where the set of scaling matrices, D, has a similar structure as � (the structured uncertainty matrix) with

an appended identity matrix. The terms, Fl, P , and K, denote the lower linear fractional transformation,

augmented plant, and the controller, respectively.

For the LAMSTF problem, Figure 9 shows the augmented plant, P which includes the performance and

uncertainty weights.

Figure 10(a) shows the actual uncertainty and the controller connections so that robust performance

can be evaluated via �-analysis. This involves the numerical evaluation of � which is approximated by the

lower and upper bounds. The analysis could include the evaluation of the degree to which robust stability

and nominal performance are satis�ed independently hence providing valuable hints on a possible tradeo�.

The level and shape of � achieved usually indicates a need for improvement in the controller.

Having decided that the controller needs re�nement, an approach to improving � is called the \D-

K iteration,". In this approach, K or D is optimized independently and sequentially; by �xing D, K is

obtained from a scaled H1 optimization problem and, by �xing K, a convex optimization is performed at
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Figure 9: Augmented Plant of LAMSTF

each frequency with respect to ln(D). Note that optimizing for D while keeping K �xed involves the search

for the minimal upper bound on � while optimizing for K while �xing D involves the minimization of an

approximation of � itself. Figure 10(b) shows the closed loop transfer function of interest, Fl(P;K), and the

scaling matrix, D which form the scaled H1 problem. Although this approach is iterative in nature and

P

K

D D-1

F (P,K)
l

e u

P

K

∆ i

∆y

e u

zc
zc

ez ez

Figure 10: (a) Robust Performance; (b) �-synthesis

convergence to a global minimum is not guaranteed, past numerical studies show excellent convergence. For

example, in the recent robust line-of-sight control problem [6], typically 2 or 3 iterations were su�cient. In

this study, 2 iterations are made. To solve the H1 problem the Glover-Doyle algorithm [9] is used. The

MATLAB toolbox, �-Tools [12] is used in this study for the analysis and synthesis of the controllers.

3.6 Control Designs

Four controllers are designed and analyzed in the following: performance H1, performance �, robust

H1, and robust �. In computing the structured singular values, all controllers were reduced to 30 states

by internal balancing. The controllers were reduced to ease computational burden, since many of the states

were very weakly controllable and observable.

For the performance case, the H1 and � controllers gave H1 norms of 1.75 and 1.18 and from Figure

11, � values of 1.27 and 1.18 respectively (although the upper bound for perf MU case from the �gure is

larger, �must be less than the corresponding H1 norm). Therefore, although the H1 norms are signi�cantly

di�erent, robust performance is similar from the � plots. This is expected for the performance case where

the uncertainty levels speci�ed are small. Note also that the upper and lower bounds of � for both cases are

close which is consistent with past experience.

For the robust case, the H1 and � controllers gave H1 norms of 3.81 and 1.70 and from Figure 12,

� values of 2.75 and 1.70 respectively. The signi�cant decrease in � for the robust � case over the robust

H1 case means that a signi�cant robust performance improvement is expected. This is expected for the

robust case where the uncertainty levels speci�ed are not small. Basically, due to the larger uncertainties

speci�ed, the H1 design produces very conservative results because performance and robustness constraints

cannot be satisfactorily incorporated without using structured singular values. The peak of the � plots for

the robust HINF case also shows that it is di�cult to satisfy robust performance due to the highly unstable

11
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Figure 11: � upper and lower bounds for Perf HINF (left) and Perf MU (right).

pitch and yaw modes at approximately 60 rad/sec [1]. The � plots also indicate that tracking performance

under signi�cant uncertainty at low frequencies drives the design problem for both H1 and � controllers.

Again note that the upper and lower bounds of � for both cases are close which is consistent with past

experience. Note that the initial peaks are attened for the � controller indicating near optimal conditions.
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Figure 12: � upper and lower bounds for Robust HINF (left) and Robust MU (right).

The previous plots show � values for di�ering sets of constraints. For comparison purposes (perf case

vs. robust case), the constraint weightings for the robust controllers were used for computing � for all

controllers. Figure 13 show the near converged � plots for H1 and � controllers for performance and robust

cases. Each plot shows robust performance (top line), nominal performance (middle) and robust stability

(bottom). Note that at low frequencies, the performance controller is better while the robust controller

is better at higher frequencies. It is also clear that the performance MU controller is not much better

than performance HINF controller. However, robust MU controller is expected to perform better at lower

frequency (i.e. tracking) while slightly worse at higher frequencies than robust HINF controller. Interestingly,

in all cases, robust stability is easily satis�ed even for the performance controllers. We note that the � (peak)

of performance � controller is slightly smaller than the robust � controller. This is probably due to factors

such as suboptimality in the H1 and D-K iterations and model reduction errors.

In summary, the � design did not improve over theH1 design for the performance case but is signi�cantly

better for the robust case. The performance controller is expected to perform better at lower frequencies

where tracking occurs while the robust controller is expected to perform better at higher frequencies. These

analytical predictions were tested in laboratory and are discussed in the next section.
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Figure 13: �: upper bounds for robust perf, nominal perf, and robust stab

4 Results

4.1 Controllers Tested and Model Reduction

Speed limitations of the real time control computer required that the 30 state controllers be implemented

at a sample rate of about 600 Hz. The four controllers had loop-gain bandwidth of about 110 Hz, and

it was discovered that discretizing at this speed was inadequate. Therefore, further model reduction,

through balanced realization, was performed and the controllers were implemented with fewer states at

higher sampling rates. For the performance controllers 20 states were implemented at 800 Hz, while the

for robust controller, which had a slightly larger bandwidth, 17 states were implemented at 850 Hz. The

0 10 20 30 40 50 60
-12

-10

-8

-6

-4

-2

0

Balanced states

Figure 14: Normalized Hankel SV for Robust MU controller

normalized truncation error is shown in Fig. 14 for the robust MU controller case. For 30 states, the

singular value error is less than 10�5 while for 17 states, the error is nearly 10�2, i.e., the least signi�cant

normalized singular value increased by 3 orders of magnitude for the reduced models. A reasonably reduced

controller is expected to be approximately the size of the augmented plant, which was 30. Therefore, for the

highly reduced compensators which were implemented the robustness properties of the controllers must be

reevaluated and these properties considered when interpreting the experimental results.

The � values were recomputed for the 17 states and 20 states controllers which were actually imple-
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mented. Figure 15 show a signi�cant decrease in robust performance predicted by reducing from 30 to 20

states for performance case and by reducing 30 states to 17 states for the robust case. Note that for the H1
cases, even robust stability (bottom lines) is not satis�ed (cf. Figure 13). Therefore, the actual controllers

implemented are not expected to perform as well for a reasonable sampling rate.
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Figure 15: � upper and lower bounds for reduced order Perf HINF (left) and Perf MU (right).

4.2 Comparison of Simulation and Experiment

Figures 16 show the di�erences between simulation and experiments for the robustH1 and � controllers.

Each pair of plots show a step tracking response in a particular axis and the total control power required

to produce the response. The simulation involved an analog plant controlled by a discrete controller of the

same order which was implemented. The simulation included a pure time computational delay of 4:3� 10�4

seconds.

The �gures show that the simulation is close to experimental results for the translational motions. The

rise time and steady state values are fairly close in all cases. The damping however are quite di�erent,

especially in pitch and yaw. The power used in the test is quite similar to the predicted values except at

later times where residual motions exist only in the experiments. Note that the experimental responses for

the robust H1 design (Fig. 16) show large oscillations which are at approximately 20 Hz which are not

apparent in the simulation. This discrepancy is consistent with the � plots in Figure 15 where the � peaks

occur at approximately the same frequencies.

Figure 17 shows the simulation versus experimental comparison for the performance controllers. The

responses are closer to simulation for these cases than for the robust design, however, they exhibit the same

type of damping errors in the pitch and yaw tracking response.

4.3 H1 versus �

Figure 18 show the experimental comparisons between H1 and � controllers for both performance and

robust cases. The � controller is only slightly better than H1 controller for the performance case. This

is consistent with the fact that the � values for the both the robust and performance cases, as shown in

Figure 13, are similar. However, the � controller is signi�cantly better than H1 controller for the robust

case. Again, this is consistent with the signi�cantly di�erent � values for the robust and performance cases,

as shown in Figure 13. Notice that the � controller generally requires less control power but gives better

performance than H1 controller. Note also that the power levels are larger for tracking rotational degrees of

14
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Figure 16: Experiment (solid) vs Simulation (dotted), Robust designs
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Figure 17: Experiment (solid) vs Simulation (dotted), Performance designs
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freedom. This is expected because the rotational modes, which have real poles near +60 rad/s, are violently

unstable and at a higher frequency than the translational modes.

4.4 Performance and Robustness Tradeo�s

Figure 19 shows the experimental comparison between controllers designed for performance with small

uncertainties versus controllers designed for performance with signi�cant levels of modeled uncertainties.

Figure 19 show that the performance H1 controller has signi�cantly better tracking response then robust

H1 controller. While it is clear that the performance controller gives signi�cantly better tracking response

than the robust controller for the H1 designs, for the � designs the performance and robust controllers

were more nearly matched. Unfortunately, the H1 is not able to handle the inclusion of signi�cant levels of

uncertainties along with the tracking performance constraints, and a low overall robust tracking performance

is obtained in the laboratory.

4.5 Robust Tracking under Measurement Noise

To investigate the e�ect of external high frequency noise on the closed loop stability and tracking

performance, colored Gaussian noise was introduced at the input to the controller. A large noise level

was chosen to highlight its e�ects on the closed loop response. Figure 20 shows the frequency spectra of

experimental response of the performance and robust cases for H1 controllers. The �gures show improved

noise rejection of up to a frequency of 300 and 200 Hz for rotational and translation axes respectively. At

the lower frequencies, the robust case reduces the noise response by approximately 20 decibels. Note that

the improved noise rejection properties of the robust case is anticipated from output uncertainty weighting

shown in Figure 6 and the � plots of Figure 15. Figure 21 show experimental tracking response of y-axis

under severe noise for performance and robust H1 controllers. Notice that the step in the tracking command

input is almost lost in the noise. The other degrees of freedom also had similar noise added to their signals.

The tracking response for the robust case is signi�cantly better than the performance controller and it is

very similar to the noiseless responses obtained previously.

5 Concluding Remarks

The purpose of the experiments were to address what-if questions on common models of uncertainties

and was not explictly taylored for the LAMSTF testbed. The structure and the level of uncertainties

assumed are only roughly known, without the bene�t of any system identi�cation results and are modeled as

simple multiplicative uncertainties at the plant inputs and outputs. No attempt has been made to re�ne the

nominal and uncertainty models through testing. Not surprisingly, comparisons between experiments and

simulation indicate that the uncertainty model assumed is itself signi�cantly inaccurate, especially in the

rotational modes. Further robust system identi�cation experiments aimed at improving the the nominal and

uncertainty models are need for further improvement in robust performance. It is noted that the LAMSTF

is highly open loop unstable. This means that some form of closed loop system identi�cation can only be

applied, which signi�cantly complicates the problem of improving uncertainty models through experimental

data.

Inspite of the uncertainty in the uncertainties assumed, the experimental results con�rmed the following

simulation/design predictions: (i) � design did not improve over the H1 design for the performance case but

was signi�cantly better for the robust case, (ii) performance controllers gave better tracking performance

than robust controllers at lower frequencies, and (iii) robust controllers gave better tracking performance

under high measurement noise levels. Analytical and experimental results indicates that a satisfactory

level of robust tracking can be achieved for the highly unstable LAMSTF system. The speed of the real

time controller signi�cantly limited the implementation of modern multivariable robust controllers and

further improvement is suggested. From a testbed standpoint, this study demonstrates analytically and

experimentally that when signi�cant uncertainties must be included in a control system, optimizing � can

be quite useful over direct H1 design.

Although nothing concrete has been proven, the results of this study provide a better understanding

and appreciation of the physical signi�cance of the numerous weighting parameters often encountered by the
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Figure 18: Experimental comparison, H1 (solid) vs � (dotted).
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Figure 19: Performance (solid) vs Robustness (dotted).
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Figure 20: Frequency spectra of experimental response with high frequency noise input.
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Figure 21: H1 Controller tracking with noisy input. Performance (Solid), Robust (Dotted).
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control designer in the application of H1 based control design techniques. In this regard, this study has

been quite useful.

6 Acknowledgements

The authors would like to thank Mr. Nelson J. Groom and Mr. Tom Britton for their helpful comments

in the investigation of control laws for LAMSTF system.

References

[1] Nelson, N.J., and Britcher, C.P., \Open-Loop Characteristics of Magnetic Suspension Systems Using

Electromagnets Mounted in a Planar Array," NASA-TP 3229, November 1992.

[2] Balas, G.J., and Doyle, J.C., \Robust Control of Flexible Modes in the Controller Crossover Region,"

American Control Conference, Pittsburg, PA, June 1989.

[3] Balas, G.J., and Doyle, J.C., \Robustness and Performance Tradeo�s in Control Design for Flexible

Structures," 29-th IEEE CDC, Hawaii, December 1990.

[4] Balas, G.J., and Lim, K.B., \Control of a Flexible Structure in the Presence of Natural Frequency

Uncertainty with H2 Performance Speci�cations," American Control Conference, San Francisco, CA,

June 1993.

[5] Lim, K.B., Maghami, P.G., and Joshi, S.M., \A Comparison of Controller Designs for an Experimental

Flexible Structure," IEEE Control System Magazine, Vol.12, No.3, June 1992.

[6] Lim, K.B., and Balas, G.J., \Line-of-Sight Control of the CSI Evolutionary Model: � Control,"

American Control Conference, Boston, MA, June 1992.

[7] Junkins, J.L., and Turner, J.D., Optimal Spacecraft Rotational Maneuvers, Elsevier Science Publishers,

New York, 1986.

[8] Doyle, J.C., \Analysis of Feedback Systems with Structured Uncertainties," Proc. IEE-D 129, 1982, pp.

242-250.

[9] Glover, K. and Doyle, J.C., \State-Space Formulae for all Stabilizing Controllers that Satisfy an H1
Norm Bound and Relations to Risk Sensitivity," Systems and Control Letters, vol. 11, pp. 167-172, 1988.

[10] Doyle, J.C., Glover, K., Khargonekar, P., and Francis, B., \State-space Solutions to Standard H2 and

H1 Control Problems," IEEE Transactions on Automatic Control, Vol.34, No.8, August 1989.

[11] MUSYN Robust Control Short Course Lecture Notes, Arcadia, CA, September, 1989.

[12] Balas, G.J., Doyle, J. D., Glover, K., Packard, A. K., and Smith, R., �-Analysis and Synthesis Toolbox,

MUSYN Inc., Minneapolis, 1991.

21


